QStudioforJava

The Software Health Tool for Java

QStudio for Java Enterprise 2.0

QStudio for Java is a sophisticated code quality assessment and coding standards technology for Java
development detecting potential software defects at compile time. It offers companies the ability to significantly
reduce code review effort by automating a major portion of the code inspection and coding standards process.
QStudio for Java gives developers the ability to automatically assess and control software quality concepts such
as reliability, maintainability and efficiency.

QStudio for Java Enterprise is an enterprise strength collaborative solution that significantly improves software
quality (and thereby productivity) by empowering all team members to automatically inspect and control the
quality of Java based source code.

QStudio for Java Enterprise allows software process managers (software managers and QA managers) and
software developers to automate, coordinate and support quality control through a distributed software quality
control and management system. The client interface and functionality for the developer is identical to that of the
Pro version. An additional web-based interface is available for the enterprise-specific functionality listed below. An
online Enterprise server can be visited at www.ga-systems.com.

Enterprise-wide control and reporting on quality metrics (ISO 9126 conforming) with respect to
compliance of the source code to quality standards

Code conformance to selectable departmental and project related code quality standards

Trend analysis based on formal milestone creation showing the quality evolution

Aggregated Code quality observations across software projects

Fully web enabled graphical administration and reporting capabilities

Command line interfaces for batch processing of large projects

Interface with code management systems to ensure that only code satisfying the defined quality
standard is committed to the code base

Enterprises are looking for ways to improve their software development processes. They want to improve time-to-
market, software quality and the efficiency of software maintenance. QStudio for Java gives them the benefits of
automated software code quality control:

Reduce time to market by cutting testing time due to earlier detection of (potential) software errors
Significantly reduce review effort (and therefore cost) by automating a major portion of the inspection
process (adherence to coding standards, usage of best programming practices)

Improve quality control and thereby code quality by directly supporting adherence to improved
programming practices and corporate coding standards and avoid software quality degradation

Assess the quality of its existing code base in order, for example, to establish maintenance budgets or
for in-sourcing or outsourcing contracts

Research shows that static analysis can reduce defects by up to a factor of six. (Capers Jones, Software
Productivity Group). Some 60% of the software faults that were found in released software products could have
been detected by means of static analysis (Bloor Research). On average, research shows that 40% of the faults
that could be found through static analysis will eventually become a defect in the production software. The
payback is so powerful and direct that not making use of static analysis during the development cycle is throwing
money away.

Control conformance to coding standards and the ISO 9126 quality standard

QStudio technology couples advanced static analysis capabilities to the ISO 9126 quality standard framework.
QStudio for Java is the only static analysis tool on the market today that supports an explicit quality model that
can directly tie into an organization's quality processes.

QStudio® enables automated quality control on source code. The corporate code quality goals can be defined in
a coding standard using QStudio® rules. The coding standard specifies which rules need to be applied and what
their parameterizations are. The developer uses the QStudio® toolset to verify the source code against the
conformance to the coding standard and, in the event of identified non-compliances, performs rework (guided by
the observations, rule descriptions and patterns that QStudio provides).

QStudio specifies quality concepts in a measurable way based on an extended version of the ISO 9126 quality
standard. QStudio recognizes quality attributes such as reliability, maintainability, testability, re-usability,
portability and efficiency. The model defines a stepwise refinement of the notion of code quality into a set of ISO
defined quality attributes and from these a further breakdown into quality sub-attributes. QA Systems proprietary
technology maps these attributes in turn onto programming constructs.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

Reliability

QStudio Extended ISO Model

Testability

Eﬁiciehcy

Failure Liability Complexity Time Behaviour
Complexity Volume Resource Behaviour
Modularity

Reusability Maintainability Portability

Modularity Failure Liability Development Environment
Structuredness Complexity Conformance
Development Volume User Platform Conformance
Environment Conciseness
Conformance Clarity
Modularity
Structuredn ess

Style Conformance

User Definable and User Customizable Rules

QStudio for Java default supports over 200 rules some of which can be used to instantiate new customized rules.
QStudio also allows users to add their own rules thus in practice therefore, the number of rules supported is
unlimited.
QStudlo for Java supports user rule definitions via the open-source PMD rule specifications (allowing:
QStudio users to define their own rules via the PMD specification
QStudio users to tap into the PMD user community and make use of the various rule sets being defined
within the PMD community
PMD users to seamlessly extend their rule sets with the extended 1SO 9126 quality model by importing
them into QStudio

QStudio for Java has advanced rule customizability capabilities including:
Rule configuration e.g. upper and lower boundary values, selectable scope and field modification and

Rules instantiation for which a value can be entered at runtime
Rules for which a regular expression can be entered as value (e.g. for naming conventions)

Project and File Level Code Inspection

Code Inspections can be prEwmr—" B
performed per project, per [Fie Anabz view Help
package (all source files within a |7 | &g || 2|8 |l @]]
package-node) or per source file. = I
. . . QA Bvstems dermo
During an inspection run the Java T Thread me - Thiead.ourrencThread(): g
. J App\elFrameJava if (amimation.frames == null)
source code is checked on all the T roturn:
. B idirBul Il orithrm java i a} 1 = &} LhE =
rules as configured in the checks T oinkga T S D 11 temmRane < D ||
COI’]fIguratIOI’] g gtzlzleﬁtur‘:}\lgunlhm.mva try {
. ractal java :
3 cotes s e —
H . i gmﬁ;ﬁa AnimarionFrame thisFrame = (Anlma\’:iunl"x:amej
On rule non-compliance detection T OtarTestave anination. Ezanes. get animssion. curre
1 H J DrawTest, repain :
an observation is generated oo b j
J Graphappletjava || | »

stating which rule was violated, the
reason of the violation and the
location where the observation
was made.

59 353

i pe e
The hody of a catch clause shuuld cumam at \easl one slalemem

4
2 358 4|Take care using the "==" operator to compare objects; use method "equals(” instead,

59 537 4|The body of a catch clause should contain atleast ane statement

126 734 4 The return value of non-void method "append" is not used its result could be valuable.

128 T44 4/The return value of non-void method "append" is not used, its result could he valuable.

752

e return value of non-void method "append” is not used, its result could be valuable.

755

e return value of nan-void method "append” is not used, its result could be valuable

761

I3

<

e return value of non-void method "append” is not used, its result could be valuable =
3

o et el o nan unid rathod Taddl e nat iend e ol MI.M bl

Ohserations | Inspection Log

Showing awsilable ohservation data

|Ln 327, col 20 [Ohservations: 731 of 731

QStudio for Java has the ability to analyze incomplete source bases. This is a particularly powerful feature since it
means that analysis can take place at the subproject level providing support for very large projects.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

When the analyzer hits files missing declaration information that cannot be resolved due to missing files/classes,
it determines which rules can still be applied despite the missing information and applies those only. In practice
this means that up to 80% of the rules can still be applied despite incomplete source trees.

Annotated Source Code Generation

A powerful feature is the automated annotation of source code allowing easy review of code.

NTitle: @5tudio JAVA

NiCopyright: Copyright (o) 1989-2001 @A Systems Technologies BY.
lCampany: @A Systems Technologies B.Y.

ifDescription:

package com.gasystems.io,

import java.io File,
import java io Serializahle,
import java.util.Date,

553
@) {243 Do natwrite documentation comments that exceed position 70, (Style Conformance)

*This interface provides all functionallity required to load and store data
*from and to a file.

* i@author Sweder Schellens
*igwersion wfull_filespec: AbstractDataFile java, 9 javal %

#

@ (200 Method “toStingd" notimplemented for class "AbstractDatarile”, (Modularity)

public abstract class AbstraciDataFile
implements DataFile, Cloneable, Serializable

s
* Bets the jawa. io. File used to read the data
*

* @param file the java.io. File to bhe uged for read aclions
*
!
@) {17481 Avoid declaring method "setinputFile” synchronized . { Modularity)
public synchronized void setinputFile(File file) {
inputFile = file,

}

=
* Gets the java.io. File usedto read the data.

* @return the jawva. io. File to be used for read actions
4

i
nublic File aetinputFile() {

Integrated Development Environments

'@ [49) Maximum ratio public/private class members exceeded (3.25 = 3.00) for class "AbstractDataFile”. (Structuredness)

QStudio for Java seamlessly integrates with the following IDE’s: JBuilder™, Oracle® 9i JDeveloper, Eclipse™,
WebSphere Studio® and Visual Age® (IntelliJ, NetBeans and Sun ONE planned later in 2003).

QStudio® for Java is available for Windows (98/2000/NT/XP/ME), Linux (RedHat Linux 6.1 and higher, SUSE

Linux 7.0 and higher) and Solaris (Solaris 6.1 and higher

Enterprise Extensions

QStudio for Java Enterprise automates team/departmental
based enterprise quality control as opposed to the single
user approach supported through QStudio for Java Pro.

The Enterprise version is role based distinguishing software
engineers, quality managers, project managers and
application managers. Each role is granted different
(related) functionality.

Multiple coding standards and quality standards
configurations can be managed and made available to the
software development team.

Formal inspections are supported. A formal inspection
creates a milestone in the quality repository.

Prior to an inspection, a coding standard to inspect against

can be selected from the server. Quality analysis data is
stored in the quality data repository in order to facilitate

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are

registered trademark of Sun Microsystems. All other names are used for i
registered trademarks of their respective companies. ALL RIGHTS RESE

E
s

Enterprise
0-data

SEMVET

[leveloper

- Individual code inspections

- Best practi
- 10E ntegration

Project Manager
- Team quality contral

- Knowledoe exchange

Ces empowermaent

A Manags

- Quality status reporting
- Quality planning

- Software metrics

ling standads enforcement

advanced reporting and to measure quality evolution and quality conformance checking.

- http://195.86.21.61/index.jsp?action=show&tabid=1 - Microsoft Internet Explorer aangeboden door Wanadoo Cable v1.3c NL

File Edit “ew Favorites Tools Help | 6"

dBack + = - i3 il | Qsearch [EfFavorites (i Media ®|%v == e ¥

Address I@ http:/f195,86,21,61/index, jspraction=show&tabid=1 j @Gu | Links *
GODS]E‘ vl j fsearch web @search Site [#|searchImages Gresearch Groups Ga»Search Directory | @News CEprh 5
=
L Z
QStudioorJava

ISeIect module x| Home | Knowledae Base | My Profile | Logout

Quality Manager

The Software Health Tool for Java

Repository
[£5+3
@’ Control and maintenance ofthe repository data Select function 'I
Standards

Select standard =

Eﬁr Control and maintenance an standards

Reports
e
" Reports from the information in the repositary. Select report j
Views =
@ Views on the data in the repository ISeIec‘twew -
|@ ’7’7’7 & Internet 7

Visualizations and Drill Downs
The Quality Data Repository can be examined from multiple viewpoints.

The quality process
manager can define an
organizational structure
and select which
standard needs to be
applied against which
project, team or
department.

Formal milestone
generation is supported.
Milestone data can be
compared to measure
quality evolution for
quality trend analysis.

Various views and
reports on the captured
quality data can be
generated.

Chart, bar or table oriented reports can be generated giving a high level overview of the quality status of the

inspected software source tree.

The displayed charts are clickable to drill down to more detailed information.

Impact Level

QStudio diagnoses 5 impact levels indicating the severity of a (potential) software defect. For example, impact
level 5 (software failure) the highest) is the highest level and points to a risk that the product fails operation.

Software defects at this level may cause the application to stop show no response.

3370

B 4 software user 3.2%

2651 |:| (33 Software procezs 27.9%
2431

[€20 Development team 30.4%

[(1) Developer 22.6%

280

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or

registered trademarks of their respective companies. ALL RIGHTS RESERVED.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

Ratings

QStudio supports a ratings mechanism (Good, Sufficient, Suspicious and Bad). The ratings-mechanism provides
a valuation for the acceptable number of observations (for each category). The lower the value, the better the
code quality (on the aspect expressed by the metric).

A value of 68.3% for “Good”, for example, indicates that 68.3% of the files in the source package identified fully

satisfy the compliance criterion for that particular metric. QStudio does not only provide the metrics at full project
level but at any sub-project level. This powerful feature allows reporting of quality metrics at various sub-project

(package) levels.

This visual shows the percentage
of files satisfying (and not
[eeea so.2e satisfying) an Impact Level 4
rating. Impact level 4 (Software
B suseicions 0,00 User) points to the possibility that
user assumed quality of the
software is not satisfied due to a
risk that parts of functionality
cannot be used or that basic
product features such as
performance, resource behavior,
user friendliness or accuracy are
not within acceptable limits.

Quality Attributes
The following quality attributes are defined according to the ISO 9126 Software Quality Model.

Reliability: The ability of a software product to keep operating over time without failures that renders the system
unusable. Observations generated on reliability indicate a risk that the application will fail during actual use.

Maintainability: The aptitude of the source code to undergo repair and evolution. Observations generated on
maintainability indicate that changes are hard to implement.

Testability: The amount of test resources needed to reach acceptable test coverage. Observations generated on
testability indicate that a great number of test cases might be needed to reach acceptable test coverage.

Re-usability: The suitableness of the source code to be used by a variety of users. Re-use is the practice of using
parts of source code that already have been developed. Observations generated on re-usability indicate that re-
use is limited or difficult.

Portability: The ability of the source code to be used on various user environments and development
environments. Observations generated on Portability indicate risks that the software product can't be used on
specific user platforms or that the source code can't be used "as is" in specific development environments.

Efficiency: The ability of the software product to perform its functions related to the amount of resources that are
used by the application. Observations generated on efficiency indicate that resources can be more effectively
used.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

The figure below shows the relationship between quality attributes and sub-attributes.

Aitribute g b-Aftri bute

Failure Liakility
Eeliability
Complexity
Volume
Maintain ability
Conciseness
Clarity
Testability
Modularity Fule based Checles
Iletnc based Checks
Structuredness
Ee-Tzability
Style Conformance
Dev. Env. Conformance
Portability
TTeer Flatform Conformance

Time Behawor

Efficiency
Fesource Behavior

Quality Sub-Attributes Distribution

The absolute distribution in the project of quality sub-attributes is as follows. The numbers above the columns
refer to the number of times an observation of the relevant type was made in the source code base. The figure
shows a breakdown of non-compliance observations based on quality sub-attributes QStudio generated a total of
over 10000 observations for this source code base. Rules and impact levels can be switched off to optimize
important observations. Output is also filterable.

Observations can be grouped by file related, quality (sub)attribute, impact level or specific conformance violation.

Trends analysis through formal milestone generation provides control over quality evolution at different levels:
overall quality status, quality attributes or quality sub-attributes and metrics.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

3313

.I‘ailu:l:c Liability 11.4%
.'LTse:l: Platform Conformance 0,3%
B e Betavior o0.5%
.Resou:ce EFehawior 0,.2%
.E-c-mpl-:::it}r 2.0%

.Uolu:ne 2 5%

.Conciseness Z6 . 3%

B crariey a1.7e

.!-I-c-dul.'l.::ity 3. 3%
.St:u-:tu::-dness 1,2%

. Style Conformance 6,.7%

The relative distribution of on quality sub-attributes is as follows. The percentage numbers refers to the number of
observations as a percentage of the total observations.

. Failure Liabil ity 11.9%
.'LTse:l: Platform Conformance 0,3%
B ime Behavior 0.5:
.Resou:ce Eehawior 0,2%
.l:omplcxit}r 2,06%

. Toluame Z,5%

. Concisene== 2§, 9%

B craziey a1.ve
.Hodul:.:it}r 3. 3%
.Bt:uctu:td:n.:ss 1l,2%

.Style Conformance G&,7%

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

Example of metrics visual: average score over file related metrics, class related metrics and method related
metrics.

. Good TE,.4%

. Sufficiant T,1%

I:' Suspicious 2,9%

. Bad 1E,6%

Example of quality sub-attribute visual: failure liability - the possibility that a product failure occurs as a result of
the applied coding practice. Observations with this sub-attribute indicate that there is a risk that the software

product will fail during use.

. Good 65,E%

. Sufficiaent Z,5%

I:' Suspicious 2, ,1%

. Bad £9,2%

Pricing and Availability

QStudio® for Java Enterprise is available for Windows (98/2000/NT/XP/ME), Linux (RedHat Linux 6.1 and higher,
SUSE Linux 7.0 and higher) and Solaris (Solaris 6.1 and higher). It is priced at $295/€295 for the client and
$2950/€2950 for the server so a 10 client/single server configuration costs just $5900/€5900.

QStudio for Java Pro

QStudio for Java Pro is the single user version of the QStudio product family. QStudio for Java Pro is available at
no cost to the developer community. Download from www.qga-systems.com.

QA Systems

E]qSYSTEMS

The Software Health Company

QA Systems - The Software Health Company™ - is focused on
improving its customers' software health. QA Systems develops
software tools to assess, support, monitor and control the health
(quality) of software applications developed by its customers
both from both a preventative viewpoint as a diagnostic
viewpoint.

www.ga-systems.com
info@ga-systems.com

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

Intuitive Graphical User Interface with project organization and integrated editor

On-line descriptive rules and pattern guide including best practice recommendations
Advanced Java pattern based source code analysis at file, class and method level

Over 200 Default User Customizable Rules
Large Project Support (Incomplete Source Base Analysis Capabilities)
User Definable Rules based on PMD specifications
User Configurable Coding Standards
Coding standards conformance at project level
Coding standards conformance at team and departmental level
ISO 9126 based quality analysis
Impact Level Analysis
Configurable and extendable checks for naming conventions based on regular expressions
Enterprise Java Bean compliance support
Language based analysis including:

Thread coverage

Check for unresolved classes

Package level coverage

Sorted ordering of imported packages

Coverage of Inner classes

Inheritance Analysis

Exception Handling

Method level checks

Naming conventions

Interface implementation analysis
Metrics based analysis including:

Number of statements per method

Number of statements per class

Number of methods per class

Ratio private/public class members

Static Path count

Non-final fields per class

Max lines of code per method

Code density

Coupling

Code Nesting

Cyclomatic Complexity

Method Nesting

Inheritance depth

Lines of code metrics (LCOM)

Comment Density

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or

registered trademarks of their respective companies. ALL RIGHTS RESERVED.

T U U U U T T T

¥ vV 7UTTUTTUTT9TTTUTVT7UTTUTTTTTUTVTTUTTUTTUTUT T TV T T T T T T T T T T T

QStudio for Java 2.0 Features

Pro Enterprise

s Capabie I

¥ ¢ v79v9v9vV7UT7UTT79TT9OT4UTT7UT7UT9TTTUT4UT7UTTUTUTTUTVTTUTTUTUTTUTVTUTTUTTTUTTUT T T TUTTUT T T T T T TVTTT

Quality Data Mining capabilities
Software quality trend analysis based on formal milestone definition

Text and HTML based annotated source code reports P

T T T T

Output view filters on individual rules, impact level and quality (sub)attributes P
Observations overview in sortable table format P
Multidimensional views of observations

Click through overviews of type Table, Pie Chart and Bar Chart
Hierarchical views on Quality Attributes including conformance status
\Web based graphical views on metrics and observations distribution

Application usage reporting

Qualitx data exgort caﬁabilities

Integration Capabilities

T U T T T T

Seamless integration with Borland JBuilder
Seamless integration with Oracle9i JDeveloper
Seamless integration with Eclipse.org Eclipse
Seamless integration with IBM WebSphere Studio
Seamless integration with IBM VisualAge for Java
Seamless integration with IDEA IntelliJ (later in 2003)
Seamless integration with NetBeans (later in 2003)
Seamless integration with Sun ONE (later in 2003)

T U U U U U U U T

Standalone Environment

Command Line Interface

U U U U U U U U U T T

Integratable with Code Version Control Systems
0]

Department/Team based quality control and management

\Web enabled quality control and management

/Absolute and relative quality measurement and control

Managing quality data for multiple projects and multiple products (software releases)
Collaboration among distributed development teams

Distributed Coding and Quality Standards Management

Storing and maintaining historical quality data based on milestone analysis

T U U U U T T

Role dependent and customizable user profiles
-]
latform support

\Windows 98,2000,NT,XP,ME P P
Solaris =) P
Linux P P

| © Copyright 2003 QA Systems |

©2003 QA Systems BV, The Netherlands. QA Systems and QStudio are registered trademarks of QA Systems BV. Java is a
registered trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies. ALL RIGHTS RESERVED.

