Borland® Optimizeit” Profiler
for the Microsoft® .NET Framework

Feature Matrix

Developer productivity

Flexibility to profile any .NET managed code

Improve performance and reliability of Microsoft® NET managed code such as Visual Basic.NET, C#,° and Visual C++®

Borland® Optimizeit™ Profiler for Microsoft® .NET Framework fully supports the Common Language Runtime (CLR) for
comprehensive performance profiling

Optimizeit Profiler supports Windows® 2000 (SP3), Windows XP" (SP1), and the Microsoft .NET Framework 1.0 (SP1)

Ease of use

Plug and play: no need to recompile code or modify classes before execution

Start the tested application directly from the Optimizeit Profiler start panel

Program startup and configuration settings saved in setting files for quick startup of frequently tested programs

Option to start the tested program from the command line

Source code optional: Optimizeit Profiler provides performance and reliability information with no need for the source code. Source
code access is useful to highlight relevant lines of code

Option to pause the tested program immediately after launch to study the program launch phase

Export profile data as ASCII, HTML, or easy-to-parse ASCII to print, compare, or archive data

Start/pause/stop the tested program at any time

Easily attach/detach to and from the application being profiled

Suspend/Resume CLR execution engine to start and stop the application

Visually isolate critical code with scalable call graphs. Select a string allocation and highlight the flow of a method call to see where
memory and time are being spent

Extremely low overhead for analyzing the performance of applications under a simulated load and in a production environment.

B I d®
orian 1



Borland® Optimizeit™ Profiler Feature Matrix

Comprehensive overview of performance hazards

High level Common Language Runtime (CLR) performance information

High-level performance overview allows developers to understand in real time if a performance issue is related to CPU, or memory,
or both

Focus on a specific action in the application being tested by setting a reference mark and viewing the performance metrics from that
point onwards

Class graph: displays the number of classes loaded in the Common Language Runtime (CLR)

Garbage Collector graph: tracks garbage collector activity

Thread graph: reveals the number of threads runnung and the number of threads actually using CPU

Memory profiling
Object allocation monitoring

Real-time monitoring of object allocations to understand in real time how the profiled program uses the CLR

Easy-to-read graph shows in real time all allocated instances per class with instance count and size

Graphical display clearly shows the volume of instances of each class

Option for filter class lists based on regular expressions to focus on relevant classes

Option to set a reference mark and view the instances allocated since the last mark, to focus on instances allocated by a specific
action in the tested program

Option to view freed object count to understand performance issues related to the allocation of too many temporary objects

Garbage collection controls: Disable garbage collection to study temporary object allocations, enforce garbage collection at any time

Understand object allocations

Allocation Backtrace View allows developers to identify the code or part of the program responsible for instance allocations

Graph display of all methods involved in instance allocations of a given class with the volume of allocations in percentage

Option to reverse display to more easily focus on specific methods or lines of code responsible for object allocations

Listing of methods with highest allocation count to help identify single methods responsible for excessive allocation

Option to refine the display precision from methods to lines of code

Automatic highlight of the lines of code relevant to instance allocations with the Source Code Viewer.

N

®
Borland



Borland® Optimizeit™ Profiler Feature Matrix

CPU profiling

CPU profiling

Measure pure CPU usage or time usage during a profiling session

Display of profiling information per thread

Color highlight of threads that were busy during profiling session

Graph display of all significant methods or lines of code used during the profiling sessions

Option to refine the display precision from methods to lines of code

Time spent per method or line of code in percentage and absolute time

Hot Spot™ Display: lists methods where most time was spent to help identify bottlenecks due to single methods

Automatic highlight of relevant lines of code with the Source Code Viewer

Sampling-based profiler allows profiling of large amounts of code over a long period of time with millisecond precision while
operating with low overhead

Option to control the granularity of sampling-based profiler output by tuning the sampling period

Made in Borland ® Copyright © 2003 Borland Software Corporation. All rights reserved. All Borland brand and product names are trademarks or registered trademarks of Borland Software Corporation in
the United States and other countries. Microsoft, Windows, and other Microsoft product names are trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries. All other
marks are the property of their respective owners. « Corporate Headquarters: 100 Enterprise Way, Scotts Valley, CA 95066-3249 « 831-431-1000 « www.borland.com ¢ Offices in: Australia, Brazil, Canada,
China, Czech Republic, France, Germany, Hong Kong, Hungary, India, Ireland, ltaly, Japan, Korea, the Netherlands, New Zealand, Russia, Singapore, Spain, Sweden, Taiwan, the United Kingdom, and the
United States. * 13811

®
Borland ?


http://www.borland.com/

	Developer productivity
	Flexibility to profile any .NET managed code
	Ease of use

	Comprehensive overview of performance hazards
	High level Common Language Runtime (CLR) performance information
	Object allocation monitoring
	Understand object allocations
	CPU profiling


