
Developing with Java Components
Maximizing Productivity in Java

Application Development

July, 2001

A Sitraka White Paper

Developing with Java Components 2

Contents

Management Summary... 3
Overview of Java and Java Components ... 4
Drivers of Component-based Development ... 5

Limitations of Procedural Programming 6
Increasing Need for Flexible Applications 7
Rising Demand for Programming Efficiency 7

Evaluating Java Component Vendors .. 9
Reputation 9
Partnerships 10
Breadth of Offerings 10
Technical Support and Documentation 10

Sitraka JClass Components... 11
JClass Client-side Components 11
JClass ServerChart 12

Conclusion... 13
About Sitraka 14

Copyright© 2001 Sitraka Inc.

Note: Sitraka and JClass are trademarks of Sitraka Inc. Sun, Sun Microsystems, the Sun
logo and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. All other brand names are registered trademarks or
trademarks of their respective holders.

Developing with Java Components 3

Management Summary

Much of software development follows an anachronistic approach that
costs organizations time, money, quality and competitive advantage. Yet
these same organizations are under increasing pressure to generate
higher quality results in shorter time period using fewer resources.
When developers build monolithic, customized applications from the
ground up, they must rewrite code that has already appeared in other
applications; as their responsibilities are extended over a range of
functional and interface programming requirements, their level of
expertise is invariably diluted.

Fear of the unfamiliar and of losing control over what is widely viewed
as a highly specialized, even personalized process has made IT groups
reluctant to use externally generated code. But a steady, gradual shift to
Java component-based development is taking place as the development
process is increasingly influenced by business production models and by
market principles of efficiency, specialization and flexibility.

The benefits of adopting a component-based approach to development—
shorter time to market, enhanced productivity, improved quality—are
compelling. By using Java components, developers and their
organizations have a unique opportunity to reduce costs while
improving the quality of their client-side and server-side Java
applications. When selecting Java components, therefore, it is important
for organizations to seek out vendors with established reputations for
quality, key industry partnerships, a range of products and
comprehensive technical support.

Developing with Java Components 4

Overview of Java and Java Components

While the battle to establish standards in software development
continues, Java is emerging as the dominant environment for e-business
applications because it enables disparate technologies and platforms to
communicate with each other. The Java environment—including the
Java Language specification, the Java Virtual Machine and the Java API
Core Class Library—was created with standardization in mind.

Readily capable of fitting into existing code, Java components can
significantly reduce costs and improve productivity when developing
business applications. Java applications, in turn, can be designed to run
on a variety of platforms, including Windows, Solaris, Linux, HP-UX
and AIX.

Java components typically fit into one of two categories: they provide
technical functionality in the presentation layer of an application (e.g.,
SMTP for e-mail or enhanced user interfaces) or they solve
sophisticated business issues in a business logic layer (e.g., credit card
authorization for e-business applications).

Java components are usually connected to applications within a variety
of integrated development environments (IDEs), such as Sun’s Forté for
Java, Borland’s JBuilder, Macromedia/Allaire’s JRun Studio, IBM’s
VisualAge for Java and WebGain’s VisualCafé. Components are
developed specifically to support the various IDEs.

JavaBeans—Originally designed for user-interface and client-side
tasks, JavaBeans is a component architecture for the Java programming
language. The “bean,” or Java component, has the ability to tell a larger
system about itself: both the actions it can take (events) and its
properties (attributes). As a result, these components present a common
face to applications. Developers can use them without having to know
about their inner workings.

Enterprise JavaBeans—To allow for server-side component-based
development, Sun released the Enterprise JavaBean (EJB) specification
that adds server-side features such as transactions, persistence and
scalability. While Java server-side components generally support any
J2EE application server, they are often customized to run on specific
application servers, such as BEA WebLogic, Apache Tomcat or IBM
WebSphere.

“The use of components takes a lot
of the busy work out of developing

applications. Component use cuts in
half the time it takes for a program

to be developed.”

—Mike Marzo, Senior Technology
Architect, Goldman Sachs,

InternetWeek,
February 16, 2001

Developing with Java Components 5

Swing Toolkit—Introduced by Sun Microsystems in 1998, the “Swing”
set of Graphical User Interface (GUI) components is part of the Java
Foundation Class (JFC) library. The Swing toolkit is a collection of
components—buttons, menu bars, dialog boxes, split panes, scroll bars
and tables—that act as interface building blocks to help developers build
GUIs for Java applications. While Swing offers basic GUI functionality,
several important higher-level features such as sophisticated charting
and graphing, data-intensive tables and database connectivity are
missing.

Drivers of Component-based Development

Although reluctance to fully embracing the component-based approach
exists in many organizations, it is diminishing. True standardized
component integration, impossible before the appearance of object-
oriented programming and Java technology, is now possible. The Java
environment was created with standardization as a principal objective.
Java objects are self-contained and are created according to set rules;
they can be extracted and reused on virtually any machine that runs
Java.

The strongest resistance to component-based development still comes
from development teams concerned about losing control over the
development process. Since application development can be as
individual and idiosyncratic as the people who write it, developers are
sometimes reluctant to accept externally written code. However, Java is
already emerging as the language of choice for business. The Gartner
Group estimates that more than 60 per cent of enterprises around the
world will adopt Java applications and technology by 2004. This marks
a widespread acceptance of a technology that is ideally suited to
transform the very nature of software development.

“The market for IT products and
services, once predicated on the

elegance of the technology, is now
driven primarily by business

requirements.”

—David Sprott, Open Market
Components, a CBDi Forum Report,

January 2000

Developing with Java Components 6

Limitations of Procedural Programming
Traditional applications are those written using procedural
programming, an approach that views computing as a linear process.
When developing applications to support multiple changing business
processes, procedural programming is not as well suited as object-
oriented programming for the following reasons:

Limited reusability of existing code—One of the main challenges that
development managers face today is the pressure to build high-quality
applications in shorter time periods using fewer resources, largely
through increased developer productivity. Traditional application
development entails lengthy development cycles because most lines of
code must constantly be rewritten. Code is not reusable, so developers
must write more code than they would were they to follow a component-
based approach.

Limited application scalability—Monolithic applications are not
readily scalable. When an organization’s needs or business conditions
change—industry regulations, organizational structure, information
systems, financial models and so on—its applications must either adapt
or be replaced. Procedural development methods often distribute
functionality throughout an entire application, which makes assimilating
changes a tedious matter of modifying every instance where
functionality is affected—a poor use of development time.

Too much time spent on infrastructure programming—The
procedural approach to development forces developers to spend
inordinate amounts of time on infrastructure programming—writing
code for low-level repetitive tasks, such as opening files, loading,
moving and reformatting data, and so on. Their attention—and their
expertise—is diverted away from the application’s more customized
requirements, which imposes extra costs on the organization.

Lower overall application quality—As with the practice of any highly
technical and sophisticated skill, specialization leads to greater
innovation and higher quality. However, the procedural approach often
forces developers to write code for tasks outside of their areas of
expertise; this “dilution” of skills can diminish the overall quality of an
application.

“The Enterprise JavaBeans
component model and associated

Java 2 Enterprise Edition standards
will dominate the application server
market and drive a potential market
growth rate of almost 180% year to

year.”

—Mike Gilpin, Vice President and
Research Leader, Giga Information

Group in Information Week,
December 18, 2000

Developing with Java Components 7

Increasing Need for Flexible Applications
Component use is essentially a form of outsourcing and can be
understood in similar terms. The benefits that organizations derive from
the outsourcing of non-strategic business processes—reduced costs,
maintaining of focus on core competencies, increased speed, improved
opportunities for innovation—are precisely those that can be expected
from component-based application development.

Businesses must change as market demands change—
Organizations are evolving more quickly than before, breaking
geographical, industrial and organizational boundaries through
expansions, mergers and alliances. They are continuously reinventing
themselves in order to remain competitive. And they are focusing on
flexibility and the capacity to adapt to changing business processes.

Business applications must adapt to new business processes—
Today, organizations are focusing on technology as a tool that can be
tailored to meet their existing and future needs. That is, it is now
business itself—not technology—that is driving the market. Business
processes dictate an application’s architecture. It is no longer acceptable
for a business to model its processes around a specific application.

New applications must adapt while integrating legacy systems—
Object-oriented languages like Java, and the object-oriented
development model in general, more closely resemble the way
businesses work. While Java was not the first object-oriented language
to appear, it was the first to be easy enough to use to make it highly
practical. Business technology requirements—leveraging existing IT
investments, integrating legacy systems and applications and reducing
IT costs while increasing return on investment—are driving the push
towards widespread use of Java components.

Rising Demand for Programming Efficiency
With object-oriented programming, sets of activities are grouped as
discrete tasks, allowing the ‘flow’ of an application to follow whatever
path is required by the activity. This is an approach that more closely
resembles how human and business activity works. Component-based
applications are “encapsulated”: data and implementation are localized
within the component so that variables and methods can be added,
deleted or changed without affecting the services provided by the object.
Applications built using components can evolve and adapt quite easily,

“As the concept of interchangeable
parts fueled the industrial revolution

a century ago, creating economies
of scale and dramatic growth in

productivity, this new capability (of
using Java components) could put

software production on track to
achieve comparable gains in
productivity and reliability.”

—National Institute of Standards
and Technology

Developing with Java Components 8

which enables developers to be more productive. And, as the
organization grows and its needs evolve, existing applications can grow
with it, dramatically raising the overall return on IT investments.

Accelerated application development—For application developers,
time to market pressures mean earlier deployment dates and ever more
condensed development cycles. As every software development
manager knows, simply demanding more lines of code from developers
in the same amount of time is not a viable option. Staffing up to meet
demand is a possibility, but the worldwide shortage of skilled
developers makes this costly and difficult. Using components
dramatically reduces the amount of code that programmers have to
write, which can accelerate the speed of application development.

Enhanced developer productivity and innovation—Because the use
of components frees developers from having to spend time on
infrastructure programming and repetitive tasks, it enables them to focus
on the more specialized aspects of an application. Several benefits to
productivity result:

♦ Developers can specialize and focus on the customized aspects of
the application.

♦ Development teams can be concentrated on specific tasks according
to experience and areas of expertise.

♦ Experienced C++ developers in organizations can make the
transition to Java relatively quickly, which enables them to be
productive after a shorter learning period than inexperienced
developers.

Improved application quality—The rise of e-commerce has increased
expectations of software performance and reliability. As dependence on
Internet applications grows, the financial implications of unreliable code
are amplified. Component-based development improves the quality of
applications in the following ways:

♦ Java components developed by reliable vendors generally undergo a
rigorous testing and debugging process resulting in a level of
quality that is difficult to achieve in-house.

♦ A certain level of quality is inherent in the very nature of Java
components. Each component is self-contained, having its own
attributes and rules that prescribe how it interacts with other objects.

♦ The use of vendor-developed components allows in-house
development teams to concentrate their own quality control efforts
on the more specialized portions of the application.

Developing with Java Components 9

Evaluating Java Component Vendors

Typically, in-house components cannot be produced as efficiently as
prepackaged ones. As components are reused, so too is the knowledge
that developers gain from using them, which saves time and money for
the organization. Although the decision to purchase a certain type of
Java component is driven largely by the specific requirements of an
application, certain pivotal factors should be considered when
evaluating them:

Integration—Development teams must ensure that the components they
purchase integrate with the various elements of their technology
environment, including web servers, application servers, integrated
development environments (IDEs) and platforms.

Reliability—Once proper integration is confirmed, the components must
function reliably within the larger business application in order to
achieve higher performance.

Quality—Organizations seeking to purchase components should ensure
that each vendor being evaluated tests its Java components rigorously
before bringing them to market.

Reputation
Although it takes a great deal of experience and expertise to build
reliable components, variances in quality exist between vendors and
between specific components. To avoid problems, it is important to seek
out vendors with strong reputations for consistently producing reliable
products.

♦ Obtain input from developers familiar with the vendor through prior
use of its products.

♦ Determine how long the vendor has been creating and delivering
components.

♦ Read software industry publications, analyst briefings, case studies
and customer testimonials to see how the vendor is reviewed and
represented.

♦ Look for important industry awards obtained by the vendor.
♦ Where possible, research the financial stability of the vendor

organization, as well as its future technology vision.

Developing with Java Components 10

Partnerships
Leading component vendors form partnerships with major industry
players, relationships that go beyond simple product integration and
support. These relationships can result in the vendor receiving early
access to updates as well as technical input and briefings. They can also
result in testing cooperation to ensure compatibility with new
technologies and collaboration in development initiatives. A vendor’s
Web site should include information about its key partnerships.

Breadth of Offerings
A host of vendors in the market offer only a single component. These
one-product vendors may fill a very specific need, but their highly
localized expertise means that they are poorly equipped to help an
organization move beyond a very narrow and focused solution.

While specialization in components may indicate a certain level of
expertise, vendors that offer additional products aimed at improving the
overall development process should also be considered closely.
Elements of consistency run across products developed by the same Java
component vendor—elements related to reliability, design, and
integration. Developers using components from a single source will
experience a shorter learning curve as they master the component design
and the methods for installation and use.

Technical Support and Documentation
The needs of each design team and development environment are
unique. Customized technical support is therefore an important
consideration for an organization to ensure that it is purchasing the right
components and will be able to use those components effectively.
Support should be available both prior to purchase—during the
evaluation stage—and after a purchase.

Prior to purchase, prospective buyers should be able to download free
evaluation versions of components accompanied by some form of
support including FAQs, evaluation guides, online discussion groups
and opportunities to contact technical support directly. After purchase,
ongoing support is essential for ensuring maximum benefit from the
product, including its future iterations.

Developing with Java Components 11

Documentation provides developers with resources to help them better
understand how components are constructed and how to install and use
them. Tutorials, demos, examples of code, lists of data sources and
properties, descriptions of features, customization procedures—all help
developers gain the most from components in the least amount of time.
Availability of documentation should be a key consideration in
evaluating component vendors.

Sitraka JClass Components

Fully scalable to mission-critical development environments, JClass is
the most comprehensive collection of integrated Java components
available. JClass components cover a range of high-value GUI
functionality including 2D and 3D charting, tables and grids, data
connectivity, data input and validation, JAR optimization, GUI
enhancements and layout and reporting.

The JClass family, which consists of nine client-side components and
one server-side component, includes everything the professional Java
developer needs to build powerful and flexible application interfaces.

JClass Client-side Components
JClass client-side components are available either individually or as part
of the JClass Enterprise Suite or JClass Standard Suite. The JClass
collection of client-side components includes the following products:

JClass Component Description

JClass Chart A 2D charting component, with multiple
business and scientific chart types including
bar, pie, area, line, plot, stacking, candle, HiLo
and more

JClass PageLayout A powerful component that embeds
professional printing capabilities (like PDFs)
into Java applications and provides complete
control over page layout

JClass Chart 3D A 3D charting component for building stunning,
interactive charts with drill-down capability

JClass LiveTable A powerful grid/table component for building
sophisticated data driven tables and forms

Developing with Java Components 12

JClass Elements A comprehensive collection of GUI
enhancements and extensions

JClass JarMaster A Java archiving utility that significantly
reduces download times by optimizing JARs
before deployment

JClass Field A collection of data-aware JavaBeans for
providing data input and validation for a range
of popular data types

JClass HiGrid A unique grid for managing and displaying
dynamic, hierarchical data, letting developers
build data-bound GUIs in minutes

JClass DataSource A hierarchical data source that binds
automatically with any Java database
connectivity (JDBC) or in-memory data object;
works with JClass HiGrid, JClass LiveTable,
JClass Chart and JClass Field

JClass ServerChart
JClass ServerChart is a server-side Java component that brings the
power of data visualization from your Web server or application server
to your entire network of users. With multiple scientific and business
chart types, and support for rapid updates, JClass ServerChart gives
users real-time access to business-critical information in a highly
intuitive format.

Designed from the ground up for server-side development, JClass
ServerChart provides extensibility into the enterprise by leveraging
servlet and JSP technologies, application server integration and the
option to operate in a headless environment (without a display). Charts
are easy to maintain, requiring minimal developer resources.

All JClass components integrate with the latest platforms (e.g.,
Microsoft Windows, Sun Solaris, IBM AIX, HP-UX and RedHat Linux)
and IDEs (e.g., Borland JBuilder, IBM VisualAge and Sun Forte for
Java). In addition, JClass ServerChart integrates with leading application
servers such as BEA WebLogic, IBM WebSphere and Apache Tomcat.

For a complete list of supported technologies, visit the Sitraka Web site
at http://www.sitraka.com/jclass.

Developing with Java Components 13

Conclusion

Sitraka’s JClass family of Java components represents one of the
broadest component lines offered by any Java vendor. This is important
to organizations purchasing components for their reliability and
integration, a shorter developer learning curve and the advantages to be
gained from having an established relationship with the component
vendor. Standardizing on multiple components from a single vendor
enables organizations to equip their development teams with an
integrated, broad set of tools, and at the same time spare their developers
from having to repeatedly learn new programming techniques required
to make the various components work.

Reputation—Sitraka is one of the few vendors entirely dedicated to
developing solutions for Java. We released the first Java component in
1996, developed the first 100% Pure Java component in 1998 and were
the first to release Java 2 compatible components. JClass was the first
set of components to provide optimized support for Java 2 as well as the
first to offer 3D charting that takes advantage of advanced technologies
such as Java 3D and Open GL.

Partnerships—Sitraka has forged powerful alliances with the world’s
leading hardware and software vendors to ensure that our products
integrate seamlessly with existing and emerging enterprise Java
technologies. Among our valued partners are industry leaders including
Sun Microsystems, IBM, HP and BEA.

Breadth of offerings—In addition to offering both client- and server-side
Java components to maximize productivity in Java application development,
Sitraka offers JProbe performance tuning tools and DeployDirector, a robust and
scalable Java application deployment and management solution.

Technical support and documentation—All JClass components come
complete with comprehensive online documentation, including general
and installation information, a full product overview, API
documentation and product manuals. JClass components also include
Pre-sales Support and Gold Support with Subscription, providing a
variety of online technical support materials as well as access to
Sitraka’s experienced and knowledgeable Technical Support Engineers
in our offices in Toronto, Canada and Amsterdam, the Netherlands.

Developing with Java Components 14

About Sitraka
Sitraka is a leading provider of reliable, innovative software solutions
that enable enterprise IT organizations to leverage the power of the
Internet. A proven leader in the Java marketplace, Sitraka delivers
products and solutions that accelerate the development, deployment and
management of Java-based e-business applications. Sitraka products
include DeployDirector, a robust and scalable Java application
deployment and management solution, JProbe performance tuning tools
and JClass Java components. Sitraka has forged powerful alliances with
key industry leaders including Sun Microsystems, IBM (as an Advanced
Business Partner), HP and BEA to ensure that our products integrate
seamlessly with the latest development environments and platforms.
Sitraka products are sold and supported directly through Sitraka's North
American headquarters in Toronto and European headquarters in
Amsterdam, and through a global network of resellers. Visit Sitraka on
the Web at www.sitraka.com.

	Management Summary
	Overview of Java and Java Components
	Drivers of Component-based Development
	Limitations of Procedural Programming
	Increasing Need for Flexible Applications
	Rising Demand for Programming Efficiency

	Evaluating Java Component Vendors
	Reputation
	Partnerships
	Breadth of Offerings
	Technical Support and Documentation

	Sitraka JClass Components
	JClass Client-side Components
	JClass ServerChart

	Conclusion
	About Sitraka

